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1 Using the Fourier Transform to Find Fundamental Solu-
tions

1.1 The Paley-Wiener theorem and the Fourier transform of even and
odd functions

We have been looking at the Fourier transform

1 —ix-
(27T)”/2/6 Su(z) d.

We initially defined F : S — S, but we can also define it L? — L? (with the isometry
property) and &’ — &’. We have also seen that F : L' — L.
Last time, we also saw that

u(§) =

~ {

xz —10
If u € 8" with suppu C [0, 00), then @ has a holomorphic extension to {Im z < 0}. If u is a
measure, then u is bounded in {Im z < 0}. This leads us to the following property. First,
let’s generalize this statement.
Suppose supp u C [a,00). Then

u(§+i¢) = /eméﬂcu(x) dx,

SO
A€ +i¢)| < e,

The best we can hope for is a bound of the form e[|V,

Theorem 1.1 (Paley-Wiener). u € 8’ has suppu C [a,00) if and only if u has a holomor-
phic extension to the lower half-plane such that

[a(2)] < 72| Y.



Remark 1.1. There is a Paley-Wiener theorem in higher dimensions. If suppu C K for
some compact K, then u() is defined for £ € C". Instead of getting the support of u as
K in the other direction, we get the convex hull of K.

We can also think of the e~ iz - £ in the Fourier transform as cos(—xz - §) +isin(—z - §).

e If u is real and even, hen @ is real and even.
e If u is real and odd, then @ is imaginary and odd.
e If u is imaginary and even, then u is imaginary and even.

e If u is imaginary and odd, then @ is real and odd.

1.2 Using the Fourier transform to find fundamental solutions

Suppose we have a constant coefficient partial differential operator P(9), and we want to
compute a fundamental solution P(0)K = &y. Let D = 19. Taking the Fourier transform
gives

~ 1
PEOOK = —+1.
This tells us that )
K=——P().

So we can invert the Fourier transform to get K:

K= Goyn” (7))

Here are some issues.

e p(£) may have zeros.

e If p has zeroes, then % is not uniquely determined as a distribution.

e This procedure only gives fundamental solutions which are temperate distributions.

The easy case is when p(§) # 0 for any £ € R™. Then % € &', so this computation is
justified.

Example 1.1. Suppose P = —9% + 1 = D2 + 1. Then P(£) = (1 + £2). So we compute

K(:c):}"1<1_:§2>.




This K (x) is real and even. We are looking at

/]R 5126””5 dg.

This integrand has a pole at ¢ and a pole at —i. However, we can expend this using partial
fractions: ) .
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where the first term is holomorphic if Im ¢ > 0 and the second is holomorphic if Im ¢ < 0. So
the Paley-Wiener theorem tells us that the first one will have an inverse Fourier transform
supported in (—oo, 0], and the second one will have an inverse Fourier transform supported
in [0, 00).
If z < 0, we can use complex analysis to say

1 .
/ S d¢ = Residue at ¢ = €*.
rE+0

A similar computation for z > 0 suggests that we should get

1 .
— o€ Je — el
e'*s d&é = ce” .
/R§2

In general, if K is a fundamental solution, then so will be K + K, where K{ solves
the homogeneous equation P(9)Ky = 0. In this case, our general solution is K = cel®l +
c1e” + coe”™. We did not get these latter two terms before because they are not temperate
distributions.

Example 1.2. If P = —A + 1, then P(¢) = ¢2 4+ 1 in R™. Then

1 1
k=7 <1+52>

gives the unique temperate fundamental solution. Note that /¢ is a solution iff 14-£2 = 0.

In 3 dimensions, this is K(z) = e*mm.

Example 1.3. Let P = —A, so P(¢) = ¢2. Then K = 5% is locally integrable in R™ if

n > 3. Soif n > 3, we get that K € S’ is a homogeneous temperate distribution. Since 5%

1
e

Proposition 1.1. If u is homogeneous of order s, then U is homogeneous of order —n — s.

is homogeneous of order —2, K = F~1(2%) will be homogeneous of order 2 — n.

The example to keep in mind to make sure your numbers are right is 5= W The

Dirac mass is homogeneous of order —n, whereas this constant function is homogeneous of
order 0.



Example 1.4. If P = —A with n = 2, perform the same computation as before, but
interpret 5% as a distribution:

,;‘2«0) ~ iy [ ) g _ o0y ne,

R2\B(0,¢) ‘§|2
so we pay a price of log, which makes us lose the homogeneity property.

Example 1.5. Suppose P(§) = A - &, where A is a positive deifnite matrix. This is
a second order, elliptic, constant coefficient PDE with P = a*J 0;0;. We can transform
A — Id by a linear fransformation. Let = By, so x - £ = By - ¢ =y - B €. If we carry
out the computation, we end up with

1

K= (A1z - 2)n=2)/2"

Hormander’s book extensively discusses how the Fourier transform behaves under linear
changes of coordinates.

1.3 Fundamental solution of the heat equation

Recall the heat equation
(815 - A)u = f

We think of v as the temperature of an infinite solid and f as describing the heat sources.
This is also called the diffusion equation, since we can, for example, interpret u(t,z) as a
local concentration of salt in the water of an ocean. In probability theory, the heat equation
has connections to Brownian motion, where we let a particle move randomly at every time,
independently of the movement at other times.
Our Fourier variables will be £ (corresponding to z) and 7 (corresponding to t). We

can write our operator as’!

8 — A =1iDy+ D2,
SO

P, 1) = ’iT+§2,

which vanishes only at 7 = 0,£ = 0. Is # € Llloc? Yes! The 1/7 increases the local

integrability of this expression, so we will not need to make a distinction between the cases
n =2 and n > 3. We want to calculate

1 1
7 <z’7‘+£2> '

"Warning: Evans’ book means something different with the D notation.




First integrate in 7: We have a pole at 7 = i¢2. This pole is in the upper half plane, so

Fr 1(2.“1_52) is supported where ¢ > 0. This says that the evolution of heat is well-defined

in the future, rather than in the past. We conclude that

_ 1 _
i <z‘¢ +§2> = ce” Iz

for some constant ¢. Then we can calculate

1 1
1 o _zZ
d (z‘r+£2) = Gmyr® " Hezor

Here is another approach. We can try to solve

%@—AM:O
U(O) = 50

Take the Fourier transform in x to get

{(at+52>a=0

-~ _ 1
U(O) - (27{')"/2 .
This gives
~ 1 —tf2
u = (271‘)”/2 e .

So we get the same result.
For ¢ > 0, we can consider

{@—Am:o
u(0) = up.

Extend u to
. u t>0
u:
0 y<O.

(Bt - A)ﬁ = UQ($)5t:0.

Then

Here, ug = (Sx:(), SO UO6t20 = (5(070).
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