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1 Using the Fourier Transform to Find Fundamental Solu-
tions

1.1 The Paley-Wiener theorem and the Fourier transform of even and
odd functions

We have been looking at the Fourier transform

û(ξ) =
1

(2π)n/2

∫
e−ix·ξu(x) dx.

We initially defined F : S → S, but we can also define it L2 → L2 (with the isometry
property) and S ′ → S ′. We have also seen that F : L1 → L∞.

Last time, we also saw that

Ĥ =
i

x− i0
.

If u ∈ S ′ with suppu ⊆ [0,∞), then û has a holomorphic extension to {Im z ≤ 0}. If u is a
measure, then û is bounded in {Im z ≤ 0}. This leads us to the following property. First,
let’s generalize this statement.

Suppose suppu ⊆ [a,∞). Then

û(ξ + iζ) =

∫
eixξ+xζu(x) dx,

so
|û(ξ + iζ)| ≤ eaζ .

The best we can hope for is a bound of the form eaζ |ξ|N .

Theorem 1.1 (Paley-Wiener). u ∈ S ′ has suppu ⊆ [a,∞) if and only if û has a holomor-
phic extension to the lower half-plane such that

|û(z)| ≤ e−a Im z|z|N .
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Remark 1.1. There is a Paley-Wiener theorem in higher dimensions. If suppu ⊆ K for
some compact K, then û(ξ) is defined for ξ ∈ Cn. Instead of getting the support of u as
K in the other direction, we get the convex hull of K.

We can also think of the e−ix · ξ in the Fourier transform as cos(−x · ξ) + i sin(−x · ξ).

• If u is real and even, hen û is real and even.

• If u is real and odd, then û is imaginary and odd.

• If u is imaginary and even, then û is imaginary and even.

• If u is imaginary and odd, then û is real and odd.

1.2 Using the Fourier transform to find fundamental solutions

Suppose we have a constant coefficient partial differential operator P (∂), and we want to
compute a fundamental solution P (∂)K = δ0. Let D = 1

i ∂. Taking the Fourier transform
gives

P (ξ)K̂ =
1

(2π)n/2
1.

This tells us that

K̂ =
1

(2π)n/2
P (ξ).

So we can invert the Fourier transform to get K:

K =
1

(2π)n/2
F−1

(
1

P (ξ)

)
.

Here are some issues.

• p(ξ) may have zeros.

• If p has zeroes, then 1
p is not uniquely determined as a distribution.

• This procedure only gives fundamental solutions which are temperate distributions.

The easy case is when p(ξ) 6= 0 for any ξ ∈ Rn. Then 1
p ∈ S

′, so this computation is
justified.

Example 1.1. Suppose P = −∂2x + 1 = D2
x + 1. Then P (ξ) = (1 + ξ2). So we compute

K(x) = F−1
(

1

1 + ξ2

)
.
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This K(x) is real and even. We are looking at∫
R

1

ξ2
eixξ dξ.

This integrand has a pole at i and a pole at −i. However, we can expend this using partial
fractions:

1

1 + ξ2
=
i

2

1

ξ + i
− i

2

1

ξ − i
,

where the first term is holomorphic if Im ζ > 0 and the second is holomorphic if Im ζ < 0. So
the Paley-Wiener theorem tells us that the first one will have an inverse Fourier transform
supported in (−∞, 0], and the second one will have an inverse Fourier transform supported
in [0,∞).

If x < 0, we can use complex analysis to say∫
R

1

ξ + i
eixξ dξ = Residue at i = ex.

A similar computation for x > 0 suggests that we should get∫
R

1

ξ2
eixξ dξ = ce−|x|.

In general, if K is a fundamental solution, then so will be K + K0, where K0 solves
the homogeneous equation P (∂)K0 = 0. In this case, our general solution is K = ce|x| +
c1e

x + c2e
−x. We did not get these latter two terms before because they are not temperate

distributions.

Example 1.2. If P = −∆ + 1, then P (ξ) = ξ2 + 1 in Rn. Then

K = F−1
(

1

1 + ξ2

)
gives the unique temperate fundamental solution. Note that eix·ξ is a solution iff 1+ξ2 = 0.
In 3 dimensions, this is K(x) = e−|x| 1|x| .

Example 1.3. Let P = −∆, so P (ξ) = ξ2. Then K = 1
ξ2

is locally integrable in Rn if

n ≥ 3. So if n ≥ 3, we get that K ∈ S ′ is a homogeneous temperate distribution. Since 1
ξ2

is homogeneous of order −2, K = F−1( 1
ξ2

) will be homogeneous of order 2− n.

Proposition 1.1. If u is homogeneous of order s, then û is homogeneous of order −n− s.

The example to keep in mind to make sure your numbers are right is δ̂ = 1
(2π)n/2 . The

Dirac mass is homogeneous of order −n, whereas this constant function is homogeneous of
order 0.
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Example 1.4. If P = −∆ with n = 2, perform the same computation as before, but
interpret 1

ξ2
as a distribution:

1

|ξ|2
(ϕ) = lim

ε→0

∫
R2\B(0,ε)

ϕ(ξ)

|ξ|2
dξ − ϕ(0) ln ε,

so we pay a price of log, which makes us lose the homogeneity property.

Example 1.5. Suppose P (ξ) = Aξ · ξ, where A is a positive deifnite matrix. This is
a second order, elliptic, constant coefficient PDE with P = ai,j∂i∂j . We can transform
A → Id by a linear fransformation. Let x = By, so x · ξ = By · ξ = y · B>ξ. If we carry
out the computation, we end up with

K =
1

(A−1x · x)(n−2)/2
.

Hormander’s book extensively discusses how the Fourier transform behaves under linear
changes of coordinates.

1.3 Fundamental solution of the heat equation

Recall the heat equation
(∂t −∆)u = f.

We think of u as the temperature of an infinite solid and f as describing the heat sources.
This is also called the diffusion equation, since we can, for example, interpret u(t, x) as a
local concentration of salt in the water of an ocean. In probability theory, the heat equation
has connections to Brownian motion, where we let a particle move randomly at every time,
independently of the movement at other times.

Our Fourier variables will be ξ (corresponding to x) and τ (corresponding to t). We
can write our operator as1

∂t −∆ = iDt +D2
x,

so
P (ξ, τ) = iT + ξ2,

which vanishes only at τ = 0, ξ = 0. Is 1
iτ+ξ2

∈ L1
loc? Yes! The 1/τ increases the local

integrability of this expression, so we will not need to make a distinction between the cases
n = 2 and n ≥ 3. We want to calculate

F−1
(

1

iτ + ξ2

)
.

1Warning: Evans’ book means something different with the D notation.
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First integrate in τ : We have a pole at τ = iξ2. This pole is in the upper half plane, so
F−1τ ( 1

iτ+ξ2
) is supported where t > 0. This says that the evolution of heat is well-defined

in the future, rather than in the past. We conclude that

F−1τ
(

1

iτ + ξ2

)
= ce−tξ

2
1{t≥0}.

for some constant c. Then we can calculate

F−1
(

1

iτ + ξ2

)
=

1

(4πt)n/2
e−

x2

4t 1{t≥0}.

Here is another approach. We can try to solve{
(∂t −∆)u = 0

u(0) = δ0

Take the Fourier transform in x to get{
(∂t + ξ2)û = 0

û(0) = 1
(2π)n/2 .

This gives

û =
1

(2π)n/2
e−tξ

2
.

So we get the same result.
For t > 0, we can consider {

(∂t −∆)u = 0

u(0) = u0.

Extend u to

ũ =

{
u t > 0

0 y < 0.

Then
(∂t −∆)ũ = u0(x)δt=0.

Here, u0 = δx=0, so u0δt=0 = δ(0,0).
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